Cram Policy: Validate User-Provided Parameters for a Model
Source:R/validate_params.R
validate_params.RdThis function validates user-provided parameters against the formal arguments of a specified model function. It ensures that all user-specified parameters are recognized by the model and raises an error for invalid parameters.
Arguments
- model_function
The model function for which parameters are being validated (e.g.,
grf::causal_forest).- model_type
The model type for policy learning. Options include
"causal_forest","s_learner", and"m_learner". Default is"causal_forest". Note: you can also set model_type to NULL and specify custom_fit and custom_predict to use your custom model.- learner_type
The learner type for the chosen model. Options include
"ridge"for Ridge Regression,"fnn"for Feedforward Neural Network and"caret"for Caret. Default is"ridge". if model_type is 'causal_forest', choose NULL, if model_type is 's_learner' or 'm_learner', choose between 'ridge', 'fnn' and 'caret'.- user_params
A named list of parameters provided by the user.