Skip to contents

All functions

BatchContextualEpsilonGreedyPolicy
Batch Contextual Epsilon-Greedy Policy
BatchContextualLinTSPolicy
Batch Contextual Thompson Sampling Policy
BatchLinUCBDisjointPolicyEpsilon
Batch Disjoint LinUCB Policy with Epsilon-Greedy
ContextualLinearBandit
Contextual Linear Bandit Environment
cram_bandit()
Cram Bandit: On-policy Statistical Evaluation in Contextual Bandits
cram_bandit_est()
Cram Bandit Policy Value Estimate
cram_bandit_sim()
Cram Bandit Simulation
cram_bandit_var()
Cram Bandit Variance of the Policy Value Estimate
cram_estimator()
Cram Policy Estimator for Policy Value Difference (Delta)
cram_expected_loss()
Cram ML Expected Loss Estimate
cram_learning()
Cram Policy Learning
cram_ml()
Cram ML: Simultaneous Machine Learning and Evaluation
cram_policy()
Cram Policy: Efficient Simultaneous Policy Learning and Evaluation
cram_policy_value_estimator()
Cram Policy: Estimator for Policy Value (Psi)
cram_simulation()
Cram Policy Simulation
cram_variance_estimator()
Cram Policy: Variance Estimate of the crammed Policy Value Difference (Delta)
cram_variance_estimator_policy_value()
Cram Policy: Variance Estimate of the crammed Policy Value estimate (Psi)
cram_var_expected_loss()
Cram ML: Variance Estimate of the crammed expected loss estimate
fit_model()
Cram Policy: Fit Model
fit_model_ml()
Cram ML: Fit Model ML
get_betas()
Generate Reward Parameters for Simulated Linear Bandits
LinUCBDisjointPolicyEpsilon
LinUCB Disjoint Policy with Epsilon-Greedy Exploration
ml_learning()
Cram ML: Generalized ML Learning
model_predict()
Cram Policy: Predict with the Specified Model
model_predict_ml()
Cram ML: Predict with the Specified Model
set_model()
Cram Policy: Set Model
test_baseline_policy()
Validate or Set the Baseline Policy
test_batch()
Validate or Generate Batch Assignments
validate_params()
Cram Policy: Validate User-Provided Parameters for a Model
validate_params_fnn()
Cram Policy: Validate Parameters for Feedforward Neural Networks (FNNs)