Package index
-
BatchContextualEpsilonGreedyPolicy
- Batch Contextual Epsilon-Greedy Policy
-
BatchContextualLinTSPolicy
- Batch Contextual Thompson Sampling Policy
-
BatchLinUCBDisjointPolicyEpsilon
- Batch Disjoint LinUCB Policy with Epsilon-Greedy
-
ContextualLinearBandit
- Contextual Linear Bandit Environment
-
cram_bandit()
- Cram Bandit: On-policy Statistical Evaluation in Contextual Bandits
-
cram_bandit_est()
- Cram Bandit Policy Value Estimate
-
cram_bandit_sim()
- Cram Bandit Simulation
-
cram_bandit_var()
- Cram Bandit Variance of the Policy Value Estimate
-
cram_estimator()
- Cram Policy Estimator for Policy Value Difference (Delta)
-
cram_expected_loss()
- Cram ML Expected Loss Estimate
-
cram_learning()
- Cram Policy Learning
-
cram_ml()
- Cram ML: Simultaneous Machine Learning and Evaluation
-
cram_policy()
- Cram Policy: Efficient Simultaneous Policy Learning and Evaluation
-
cram_policy_value_estimator()
- Cram Policy: Estimator for Policy Value (Psi)
-
cram_simulation()
- Cram Policy Simulation
-
cram_variance_estimator()
- Cram Policy: Variance Estimate of the crammed Policy Value Difference (Delta)
-
cram_variance_estimator_policy_value()
- Cram Policy: Variance Estimate of the crammed Policy Value estimate (Psi)
-
cram_var_expected_loss()
- Cram ML: Variance Estimate of the crammed expected loss estimate
-
fit_model()
- Cram Policy: Fit Model
-
fit_model_ml()
- Cram ML: Fit Model ML
-
get_betas()
- Generate Reward Parameters for Simulated Linear Bandits
-
LinUCBDisjointPolicyEpsilon
- LinUCB Disjoint Policy with Epsilon-Greedy Exploration
-
ml_learning()
- Cram ML: Generalized ML Learning
-
model_predict()
- Cram Policy: Predict with the Specified Model
-
model_predict_ml()
- Cram ML: Predict with the Specified Model
-
set_model()
- Cram Policy: Set Model
-
test_baseline_policy()
- Validate or Set the Baseline Policy
-
test_batch()
- Validate or Generate Batch Assignments
-
validate_params()
- Cram Policy: Validate User-Provided Parameters for a Model
-
validate_params_fnn()
- Cram Policy: Validate Parameters for Feedforward Neural Networks (FNNs)