Cram Policy: Validate Parameters for Feedforward Neural Networks (FNNs)
Source:R/validate_params_fnn.R
validate_params_fnn.Rd
This function validates user-provided parameters for a Feedforward Neural Network (FNN) model.
It ensures the correct structure for input_layer
, layers
, output_layer
,
compile_args
and fit_params
.
Arguments
- model_type
The model type for policy learning. Options include
"causal_forest"
,"s_learner"
, and"m_learner"
. Default is"causal_forest"
. Note: you can also set model_type to NULL and specify custom_fit and custom_predict to use your custom model.- learner_type
The learner type for the chosen model. Options include
"ridge"
for Ridge Regression,"fnn"
for Feedforward Neural Network and"caret"
for Caret. Default is"ridge"
. if model_type is 'causal_forest', choose NULL, if model_type is 's_learner' or 'm_learner', choose between 'ridge', 'fnn' and 'caret'.- model_params
A named list of parameters provided by the user for configuring the FNN model.
- X
A matrix or data frame of covariates for which the parameters are validated.